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0.- FOREWORD
V

The work done during the period covered by the present FINAL Scientific
Report pertains to several topics re~ated to the application of functio-
nal analysis in fluid-mechanics.

It has lead to the following papers

1. - L.G. NAPOLITANO :“Functional Analysis Approach for the Derivation
of Hybrid Variational Functionals .

This paper was presented at the IUTAM/IUM Symposium on Applications
of Methods of Functional Analysis to Problems of Mechanics held in
Marseille , France, on September 1975.

The Proceedings have already been published by Springer Verlag . The
complete reference is :

‘tApplications uf Methods of Functional Anal ysis to Problems in Mechanics ’

Edited by P. Germain and B. Nayroles; Lecture Notes in Mathematics , no.
503 , Springer-Verlag, Berlin - Heidelberg - New York , 1976.

In the paper acknowledgment to AFOSR sponsorship was incorrectly stated
as pertaining to Grant No. AFOSR 74-2704. The correct statement should
have been Grant No. AFOSR-76-2889.

2. - L.G. NAPOLITANO :“The functional inverse approach for the variational
formulation of boundary value problems” .

This paper was presented at the Congress on Modern Problems in Continuum
Mechanics held in Turin (Italy) on November 1975.



F— 
~~~~~~~ -

— 2 -

The proceedings of this Meeting are in press.

3.- L.G. NAPOLITANO :“Functional Analysis Derivation of Hybrid Variatio na ’
Functionals for Fourth Order Elliptical Operators” .

This paper was presented at the Second International Symposium on Finite
Elements Methods in Flow Problems held in S. Margherita Li gure (Italy)
on June 1976.

The Preprints of the Symposium have been published already and copy of
them can be obtained from ICCAD (International Centre for Computer ~i-
ded Design) Genova (Italy).

4.- L.G. ~4APOLITANO and V. LOSITO :“The Closed Spline Functions ” .

This paper will be submitted for publication to an International ~~~~

Since papers No. 1 and 3 above are readily available (and an appropriate
numbe r of copies have already been forwarded to the Sponsoring Agency)
the subject Final Report will contain , in extenso , only the papers No.
2 and 4 above which constitute Parts I and II respectively of the Repo t
itself.
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THE FUNCTIONAL INVERSE APPROACH FOR THE VAR IAT IONAL

FORMULATION OF BOUNDARY VALUE PROBLEMS

by
L. G. Napolitano 
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THE FUNCTIONAL INVERSE APPROACH FOR THE VARIATIO;1AL
FOFt~ULATION OF BOUNDARY VALUE PROBLEMS (°)

by

L.G. Nanol itano

1. I~ i RODUCTION

The present author has developed a functional approach for the uni fied
der i vation of hybrid and/or classical variational formulations of boun-
dary value problems ñ J, /~J, E~?..4J
This approach ,referred to as the direct approach” , considers as ciiver
a formall~ seif-adjoint linear boundary value problem arid derives its iif-
ferent variat ional formulation from the stationary properties of a Lw.i-
field functional defined over two suitably defined linear varieties . Th:
direct approach hinges on an assumed factorization of the differe ntial o~e~-
rotor defining the bound3ry value problem and , ultimately, on the co~-
sponding Gauss-formula.

A more powerfu l and general approach , to be referred to as “inverse apnro~:~” ,

will be presented here .

In dealing with a general variational theory of boundary value prohle~s Li.;~:
and P4agenes have already pointed out the connection existing , vi~ 4~r,

underlyi ng Gauss formula, between the classes of problems that can be anal y-
sed and the assumed definition of an inner product.

The contention here is that,ultimately and more generally, the connection

(°) Paper presented at the Congress on Modern Problems in Continuum
Mechanics, Torino, 1976



is to be established between an abstract Gauss formula and classes of hc~~~t i

~~~~~~~~ proble~’- . Th~ inverse ap0roach both accomp lishes these tasks a’:i
duel y exploits its results.

The starting point is an abstract Gauss formula and the end results are var~I.i-

tiona l formulations (derived by the method developed in the direct anproac~;
of the classes of boundary value problems that can be “associated” to the qi~~:1
Gauss formula.

As it will be shown , an abstract Gauss formula involves essenti ally two Hflbert
spaces of elements Zf~and tdefmned over a domain J2. a differential operator
such that ~6 Ulis a subset ~~~~ a number of boundary spaces defined over pa:t~-
tioris of the boundary of,j~ and a set of princi pal and boun’larv oper~tor~ .
The ‘dejr’ees of freedom ’ it affords thus pert ain not only to the choice of
de finiti on of inner products but also to the very same choice~ ~~~F the eiei~~ c; L.
of the operator C and of their tensorial orders .

The power and generality of the inverse approach stems from the unified de~i~-
tion of variational formulations for the wide classes of boundary value prob~~~
resulting from such diversified choices .

The inverse approach presented in this paper is a natural outco~ie of the di-
rect approach previously developed by the author. It thus makes uses of many
results already established in previous works to which reference is made for
greater details and/or for pertinent discussion of the signif~cance of the
main assumption which underlies its development.

IL
t — —-~

p—.
~~-
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2. - FUN DAMENTALS OF THE INVERSE APPROACH

2.1 - The abstract Gauss formula

Let J~ be an open bounded subset 0f ct~~~h sufficiently smooth boundar y ‘~J J L
and let the~e ’~’p. LQ/7~in1S?~ C’~ J~—’ 

sit) be (in >1) arbitrary
partitions , not n~cessari1y all clistinct of ‘DJZ .

Let V L-32-)C K (JZ~) be two appropriate subsets of the rea l

Hu bert space L~
’(J?.~where the real function ?1& V can be of any

tensorial order , and G be a differential operator of order in and arbitra ry

tensorial order . Assume that there is a Gauss ’s formula of the type

< r ~~~>- (~~~G’~~) ~~~~~~~ (P .~~r~~~ #~~ )  C2.l)

where 6 U, Z ~~~
. lit,652Ja subset of the L (‘~~pace appropriate to

their comuon tensorial order < , ~ ‘ and C. 
~ 
) denote inner pro-

ducts in a, and V , respectively, G*is the formal adjoint of G arid

the ? are bilinear symmetrical forms on’D~.2which characterize the set
of (in) “principal” (resp. “natural”) boundary differential operators

(resp. N) of order ( j  - 1) Lresp.  m - j  7

The condition s on~)~~ and its partitions necessary for the (formal) vail-

dity of the Gauss ’formula are assumed to hol dL5~

The nature of the elemev~ts ~f and ~ (and thus of the operator C) and

the inner products ~~ . , 
> and C~ )(and thus of the sets of boundary diffe-

rential operatorsjare left “unspecified ” .

Denoti~~ by e~. and ~ the restrictions of ~)to’\~~nd ~ 52~ respecti-vely, and let ’: d /

I~
. 
~
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c / = ’ I

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
d

where

L i~,/ P’L) - - - - -

- - - -- ,

Then the Gauss formula ( 
~ 

) can be rewritten as

The thus fas arbitrary element 
~~
. U, (iL ) is now restricted

to the subset defined by

~ a~~and ~~ will be referred~~~spectively1~~ 
as the compatible (or

constitutive) and non-compatible parts of ~

The subset 2 £1 (‘c) supposed non-empty lSeeL4Tfor relevant examples ]
is orthogonal to the subset j ~~VJ ~ orthogonality being understood with

respect to the inner product ~ , > .

1: On account of this , for 2 ~ (1~ the Gauss formula (
~.2.) yields ~

w~~ Iv 6V~~ ?~ Cs ~~~~~~~~~~~~~~~~~ k(~~ J.:



- -

~~~ 
~~~~

I
> ~~~~ ~~~~~ ; ~~~~~~ ~~ 

ê~(~ Wi)- ~~ (r~~:,’i1) ~~
In principle , the inner product .‘~~ c5T,T’~.> could be fu r ther decom posed ,
L~ relating it to the inner product pertaining to still another space

and to other bilinear forms . This development is not to be pursued here.

rt will onl y be supposed that there is an element ~ , belonging to the

~rte s ian product space H~ ~ L~62)cg~1 t~ (~~5a~) , appropriate

to the tensoria l order of ~~ which determines TE � via a pertinent

boundary value problem .

The e l ements :*~ , ~~, )1.. and ~Z. will be interpreted as “generalized ” con-
straints imposed on the element Z of and it will be assumed

that ~ given set of values for the generalized constraints cha rac ter ize~~
a uni que element ~ 1/~ (32) as formalized in the next

paragraphs.

Define :

z C 
~

as a “constra int element” . Its components will be referred to, res pec ti ve-
l y, as source , princi pal boundary , natural boundary and constitutive
(or compatibility) constraints. Thus they prescribe , i n the or der ,
the source (s) in JZ.. of an element 2~ , its (Wi-) princi pal boundary
values f.’- (1 ~j ~m) on the (in) non necessarily coincident subsets
of ~ ; its (in) natural boundary v~ lues ~tjon the (in) complementary

subsets 
~~

1z
d~ 

, and , finally, the value (r) characterizin g its ”non-
compatible ” part ‘1

_ _ _ _ _ _ _ _  
_ _
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It is assumed that there exist suitable spaces ~~~~ ~~~and H~
closed with respect to appropriate norms , such that if

- 

1T~ (.2~) ~~ jan. 
(
~ li~

then for any CE (i.e. any ~~~ ~~& fl 6 J
~7~~H~)

the linear mapping J :  ~~—~~1t~ac~JZ) is one to one; continuous and
bounded .fl 

~
, ~E4’].

The space will be called the constraint space and its (closed )
F-image 1-1 F(~’JC. /Ia (JZ-) will be cal ed the “solution

pace ” . F is an isomorphism between the constraint space ~~and the solutio n
space

The hypothesis on F is related to the existence and uniqueness of the so-
lut ion of the followin g four linear boundary value problems

1

‘5—

~~~~

. 

~~~~~ 
~~~~

• 

(1 ~~~~~~ J 
.

~~~~~~~ 

Zr
iv.c- ixL = 0  
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~
) (~~~~~~~~~rs . Q

— It

i~ •e~

B J-~ 
- 

I

the operators ~~/~,R bei~g appropriate restrictions of F ’. The
fourth boundary value problem involves the differential operators R
‘é.n fZ.. ),~~f order m , and .~~(on ?~5L) which are l eft unspecified sin-

ce they depend on the unspecified nature of ~ and G. Notice , furthermore ,
that upon (

~~~
)

w hereas , in general (see 114’J ) f?-~ 
( 3 . ~ /~ ~ since RG is not neces-

sar i l y the n u l l  operator .

The ranges of the above defined operators are the following subsets of

the constra int space :

= L , c~

O, c~ ~

(R (/ )~~~~
C
~

: L C Y i  ~,c]J C~ c

-/ ~~~~~~~~~~~~~~~~~~ ~J J cc ~ 
S

~ 

~~~-~~-—- -~~~~~~~~~~~~~~ ~~~~~~.
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when accounting for the fact that Q < >  
~~~~ 

- 
-

The inner product among elements of each one of the four basic subspace~
reduces to only one of the four contributions contained in the Gauss
formula. Thus , alternatively and equivalently, the basic subspaces could
have been introduced directly by imposing such a requirement of the
Gauss ‘formula.

2.3 The associated boundary value problem for compatible elements.

The ierieral set up established in the previous paragraphs leads to a) the
definition of a boundary value problems for compatible elements , associated
with the given Gauss ’formula; b) the possibility of deducin g classes of
variationa l formulation s of this boundary value problem .

By definition , a compatible element ~~ is uniquel y characteri- ‘

zed by a constraint element C of the type

~ 
:~ ~~~~~~~~~

The element Z can thus be interpreted as the (generalized ) solution
of the following boundary value problem

(.-. (
~‘ ?

P. ~:/ (2 ~i / )
‘ I ~~~~~~~~~~~~~~~ 

~~ ~~~~~~~

~~~~ ~~“d
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where”(denotes the set generated by C.The notation n(s) is meant to
indicate that for problem (1) the values of IV~J

6 l’~n~~,,~.Jl are uniquel y
determined once s is given . d

The corresponding domains are (closed) subspaces of the solution space
referred to as basic subspaces and denoted by

X~ (~ 
) ~~~~~((p); ~~ : ~(C~); K~ 

F(C~)
The isomorphism F makes it possible to define a pseudo -dimensionality
(psd) for subspaces of H as the number of constraints (i.e. number of
components of the constraint element) which can be given , independently,
arbitrary values . Thus psd H = 4, any of the basic subspaces has psd =

and any fixed element -
~ 6 /1 has psd = 0L2 .J .

The solution space H has the direct sum decomposition ;

H - X~~~~~~ cF~ X~~® Iç
the basic subspaces being mutually orthogonal.

Given the property of H , the only thing which needs to be proven is the

orthogonality of the basic subspaces . This follows readily from the de-
finitions (2. ~,g) of the subspaces and from the Gauss formula(2.’i ) rewrit-

ten as to exhibit explicitel y the components of the constraint element (c&5):

((~~~
‘)- ~~ 

)-~~(P~ ~~~~)

C~~
)

/ 
~~~~ P~’>~~~) - 

/

— 

- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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The element ~ of the vector space H will be referred to as the solution
vector and the values 

~~ 
p, vi- of the source , principa l and natura l

boundary constraints will be referred to as the constraints “of” the
solution vector ?~

~-~4 Linear varieties and two-field variational functional -

Let ~~ ~1~4 be two arbitrary closed subspaces of /I~~Ic~, ~1
’p~

their orthogonal complements and , ~~ the correspondin o
. rojection operators (e.g. .-‘f,~ = Ti~ /.1 ; ~:PO( /~/ )

~

Denote by ~~~~~~ C13 the linear varieties obtained by ~rans1ating and

/ ,~~6 y~~~~~~
3

• / ,?, E

Since 2~ - ~~ ~ the projection on of asv element
satisfies the same constraints as the corresponding projection of the
solution vector Z~ . Similarly for the elements ‘~~ & . The elements
of the varieties can thus be loosely characterized as satisfying a cer- 

-

tam set (in particular nul l if 1~~H) of constraints of the solution .L2 l,L’iJ

4ne tt~~ two-f i~e*d wi~~~~~~1 - C ~~~~~~- -~- 

-~~~~~- -  -- .~~~~~~~~~~~~~~~~~~~~~~~ —,--—~~~--— ~~~-~~~~~ -~~~~~ - -. -~~~~~~~~~- ~- S- ---
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Define the two-field variational functional :

2~~
( z )  ~~~~~~~~~~~ ~ ~~~~~~~~~~~ ~-j>~ ~~~

~~~~ 

(2~~~ / a

As proven in [3jthis functional attains a stationary value for 2~ ~~~,

and 2~~such that

~ y ~ (? /3)

This functional will be used to obtain , v ia the Gauss formula , different

classes of variational problems equivalent to the boundary value prob1em( ?~/f~

3.- VARIAT IONAL FUNCTIONALS

The Gauss ’s formula (2.~~) is used to express the two-field variationa l

functional ( . .? , 1 2 ) in terms of the components of the constraint vector -C -

By recalling that ~ ~ ~~~ FC~ / 
p, ~i,cJ

and by letting

~ ~
-
~& F [-~ , f~ ~~~ *~]

with a similar notation for it is readily shown that

k~
’(
~~, ?~ ) 

~ ~ 
~~~~~~~ > - >

- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~

) C~ 1)

~1 _ . ~ 3 . 2 )

L~ . ~~~~ 
-

— ‘55 — — —-- ————-5— - - - — — -& — ~~~S. SS& — ——--- — — . c__
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and , by further developin g ~ ~~

~~~~ ~
) I

~~~
L~ T~ C~

) - 
~~L 1 ~J~~~ ~~~~~~~~~~~

Eac n one of the above four expressions leads to possible forms of one or two-
fie ld varia tional functionals which include , as it will be seen shortly, the
cl .issica l prima l and dual one field functionals. In each case there is a mininut~
014” hPr nf requ i rements to be imposed on the varieties~~~ar~dl~ in order to eli-
Hnate, as obviously needed , the terms containing unknown quantities related to

Ice solution elementL i .e. quantities other than the components of the given
-cL ;n str ain t eiementcj. Such terrns. underlined in equations (~~l )~~-tan be elimina-

ted , T ! l v  by acting on the component of the constraint elements ~-~ and C~
defini nq the linear varieti es .

Since ~~~~, and ‘4are subspaces translated by ~~, the components of~~and/or C~ to
be acted upon must be set equal to tr.e correspondino components of ~~~~~ . This
automatically~ identifies also the subspaces ~~ ~ and , upon equation ~~, i.~)1
the variety 7,1 characterizin g the eventual arbitrariness in ~~~~~~~~. Other requi-
rements can o~viousl y be added to further restrict the varieties and

In equation ( 3 ) the minimum requ irement criterion is satisfied if one takes
for then the e~

contribution becomes constant and thus irrelevant.
He~nce V~ j+ 

~ 
/~ 

and (with obvious notations)
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= ~~~~~~~ ~ j ç = x X~~~X~

Thus : fl 
~; ~~1

-~ - ~~ no indeterminacy in exists and
the functional reads

~~~~H;  ~~ :~~ tT~~~ ~~~~~~ (“)~~~
)

This is the most general two-field hybrid functional that can be obtained
since ‘

~~
‘ is an arbitrary (i.e. unconstrained ) element of H and is

subject onl y to the prin cipa l constraints on ~52.

~ simil ar procedure appl ied to equation ( 3 .2~ ) yield s

-4
~~~~:~~\ ; ~ip , : 7?

~r~ ’ ~ :Z *  Xr (f
~ X.~

and the variational functional reads

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

2 

~ 

-

~~~ 
~ç .  N’ ~~/

No indeterminacy in exists . One of the elements is still completel y
unconstrained , the othier satisfies the source and the natura l boundary
const raints only.
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When considering the other two genera l expressions for K ( 2ç~ Z ) the ten’
C~pI2~ ~‘ J 3

~~~~~ -ç)~ma.v be made to disappear since otherwise4essentia lly falls back into ‘a ’.
cases alreadj dealt with.

Accordingl y, the minimum criterion app lied to equation ( 3 3 ) leads to
( S - ~~L?

~~= X i ~~ A~
and the variational functional reads

~ ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~

~~ “ - r  ~ 
(/  ~ ~f l

Th i s is a quite general two-fields hybrid functional since , once again , no
constraints are imposes on and only the princi pal boundary constraints
are imposed on . Compared with the functional (3. ‘ ) , is disappeared hu~
the source constraints of 2~ appears explicitel y. If the res tr i ct i on
imposed on , the term ( 

~ 
) disappears and :

~~~~ 
) 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

—

The indeterminacy in Z~ is however irrelevant since as said , K would not con-
tain any volume integral of . The element can be ma de to disa ppear
all together by further imposing the natura l boundary constraint to the ele-
ments . The sing le field functional thus obtained is nothinq but the classi-
cal “dual” variational functional K.D :

~ 

/~~~~~~>~~~r er(~
,w

~~)

L~~~~~~~Z ( ~ 
‘ , (i~~g~~~m
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From the las t  expression ( ~~~ ) one finally gets

~~~~~~~~~~~~~~~~~~~~~~~~~~ f / 3 —~~

x .

, 
2.’~, -~ ~

- X’
,~ ~~

.
~ 

E’

1J  
~~~ ~~

and the variati onal functiona l reads

~ ~r~~~~( z - p ~~~~~~~] iE~~[Pv~~ n]

~ kj  ~2 (/ ~ ~ ) (~~
.

No constrain t is imposed on ~~and the indeterminacy in 2~ is once again
irrelev ant. As before, can be made to disappear by imposing the prin-
cipal boundary constraints on t’< . The single field functional thus
obtained is nothing ~~~ the classical “primal” variational functional r\p
for the boundary value problem (2, 11) :

J~
’r ~ ~~ V~~~- ~~~ ~~~~~) 

e~ (P~ ~
) 
~ k~(

’
~~J

- - (3~i~~)( / ~~,i ± ~~i~1)
‘ 1

}

_ _  —.—~~~~~~~~~~~~—~~~~~~~-~~~~~~~
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~1.. GENERAL IZATIONS

The classes of variational functionals can be ~~~~~~‘ widened by further

decomposing the subspaces Xp and )(‘.,~ . The argument will be developed
in detail only for X

F~~

. The constraint element corresponding to ,k is

L. o ak’, c.2, ~
) I

Let rbe the index set L1 ,2 ,mjjand J~any partition of j ar ’~i -

PUt P Pa + P b~~
th 

~~~~~~~~~~~~~ ~~~
L p

1’J;,~~~
Jb -

The restriction of ~ , > to will be written as

~ (i~
-
~ ~1-z ’) 

~~~~~~ 

E~ . ~~ A~- z’)  -

~~~~~ 
(~~~~~~ 

N~ ~ ‘) ÷ ~~~~ 
(
~ ~~b 

c 9
Each contribution on the right hand side can be interpreted as the restric-

tion of the inner product to two orthogonal complementary subspaces X
and defined by

~/ ~~~~~~~ :t ~~
. ~~~ 7~’ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ , } 6 I ~~

j~&~’/  ~~~~~~ 
=

~~~~ 

,d&~~5 ~~~~~~~~~~ ~~~~ ~
Indeed , the corresponding constraint elements read

I ~~

‘
, r~ ~~ ~ 

c j

1~ (Pb) r Pb I t
) L ]

~ 

---- -~~~~~~~~~~~ -~~~~~~~~~~~--.- .- -.------ -- - .~~
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so that / ~~ , the decomposition
being unique when the usual assumption upon the existence and uni queness
of the solution of the boundary value problem corresponding to X’~ .~~

‘
- -~ - ‘

Hence

K z~~~~~~~ (~~~ %b

and the orthogonality follows from equations (~~I ) and (4’,~ ) . Not i ce
that for any ZTá it is “ Ia’ ~ ~ ~ Cd ‘

~~ 
I&)on the entire bounda-

ry 
~~~

‘ SZ since for a~y i.~e i t  is 1’I-z:-/ ,,? 552 ~‘1 0. Either subspa-
ce or can be further decomposed with the same procedure hut

.1)

such a development will be omitted .

Consider now the functional K ( z~ ~
- ) and weaken the constraints

- on the variety 
~-j~ by letting :

where ~~is an arb itrary but fixed element of H.

Hence -~l~ is translate d by an element ~ whose projection on is no
lo nger equal to that of the soTution element but quite arbitrary . It is

readil y shown that the stationary, properties mentioned in paragraph 
—

(2,4i) still hold with the translate of 
~~ i~ 

by ? instead of t.

As a consequence of this new definiti on oft one has “more freedom” in
the process of elimination of the underlined terms from equations (

~ I )~~ (3. Q).
Indeed one can set the components of the constraint element L~correspon-
ding to the projection $~ equal to some fixed /ut otherwise arbitra-
ry value. As this can be done only when ~ ~6 , i.e. ~~~ // , one rea-
dily sees that the suggested procedure amounts to “shift” a constraint
from ~p~to L~

_ _  

_ 
- .- -5- - - - -—- - -~~~~~--- - - -~~~~~~~~~~~~ . -
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T hus , for instance , one can el i minate the underline d term from equat i on
( 3.1 ) by setting

wit ’i f7
~ 

a rbi t ra ry but fixe d. The var i a ti onal formulation is equivalen t to
the original boundary value problem if one restricts to the subset
satisf ying the prin cipal boundary conditi ons

Hence the new variational formulation reads

~ ~~ ~
) -e~(P~ ~

)

~~~~~~~~~~~~~~~ ~~~~~~~ ~~~~~~~~ 
,~~~~

Comparison with equations (35) shows that the principa l boundary constraint
nas been split into (p~~t 

~~~ 
an d the part  

p 
has been “shifted” from the €le-

ments 
~
_ to the elements Z .

Similar developments can be app lied to the other three expressions (3 2.)~?\ ~
) , ( 3 £ ? ) and/or for the natural boundary constraints to obtain correspon-

din g new sets of variational functionals.

c O N C L U D I N G  REMARKS

The inverse approach developed here makes it possible to unitarel y derive hybrLd
and/or prima l and dual variational formulations of classes of boundary value
DrOblem~by starting from general exp licit expressions for Gauss ’formulae. The
“degrees of freedom” are essentially constituted by the different “physical

—4 
---- - -—- - - - —~~~~~-.--- -— 
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nature ” of the elements Z (e.g. symmetric second order tensors , genera l second
o-d er- tensors , hi gher order tensors , an d so on), by the defini tion of the inn~~
product (which , among other thinns , characterizes the set of princi pal and na-
r ura l boundary diff erential operators and hence the types of boundar y conditi or~
that can be anal ysed ) and by the selection of the “constitutiv e ” part 65’ of ~
(~~h c h , for second and hi gher order tensors , can be done in more than one w c . )

~.-i~ qinq any one of the above “degrees of freedom ” lea ds to different classes

~f boundary value problems .
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THE CLOSED SPLINE FUNCTIONS
by

Luigi G. Napolitano - V. Losito

1. - INTRODUCTION

The interpolation problem solved by the classical spline functions is well

known [i ]
Given (n) points (t i ) 

in the closed interval Ia, b3 and (n) real numbers (r i ) the interpolating

sp line -function of order q~~n correspond i ng to the (n) points (ti ) is

the onl y ~~~~~~~~~~~~~~ which solves the followin g minimization problem

~~

‘ 

. 
1ci. (1. )

.~~~~ (ta: 
~~

where H [a11b] is the Hilbert space of real functions , defined on [a , bJ
having a square-integrable q-th derivative. The space ~ quantifies the rct~ o’-
of “degree of smoothness” of the interpolation curve. For q = n the interpol.~-

ting spu m e  reduces to the unique polynomial of degree (n) passing throug~i the
points

The interpolating spline belongs to the subspace of real functions s(~~

a) Airfoil 

- - - -5-~~~-----” - - - - ——



I

b) Spline-schenie

defined or [
~
, b] and such thatflJ

a) s is a polynomial of degree (2q — 1) in each of the open intervals
(1~~~i~~~n - l)

b) s is a polynomial of degree (q - 1)

c) s — 2) is continuou s on {a ,

In many aerospace problems it is necessary to find interpolating functions
for “airfoils ” , i .e. for closed curves . This interpolation problem is often

solved by using the classical spline function with ~~ )4,,, (see figure) .
Such a procedure is unsatisfactory for two reasons . Firstly, the discor iti ui-
ties introduced at the airfoil point (usually, the trailing edge) correspon—
ding to the values çand t,4are not those proper of the airfoi l (if any).
Indeed the classical spline of order q yields different and uniquel y defi-
ned values for the first (q — 1) derivatives at the points t = t1 and t = tn~

Secondly, upon the property b) of the spl i ne functions , all derivatives f ror~
order q to 2 (q - 1) of the interpolating function will vanish at the poin t P .

Thi s expeciall y for low values of q, much to restrictive in practical app lica-
tions .

In princi ple , this approach could be improved upon by imposing a number o~ a d l i -
cional requirements at the points t = t1 and t = t~ to better approximate the
shape of the airfoi l at the points P. Not much could however be said about t~~~~ ’

properties (such as existence , uniqueness, extremality , and so on) of the re-
silting classes of interpolating functions.
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A c~mp letel y different approach is advocated here . Rather than first assu n i ’’iq

that the points t~ belong to an intervalrO...~7 and then , somehow account i~ q f~~
the fac t that both and correspond to a same point of the cur .’- to

appr oximated , the points ( t~ ) are right from the beginning suDnosed t o - c ~’~
t .~ an (arbitrary) closed contour C.

By thus doing each t~ corresponds to one and only one point of the curve to r~.

a~)pro ximated and the interpolating problem for closed curves is consenuei~~lv

cos t int o i ts more natural formulat ion .

:n ~~ pres ent paner it will be shown that the interpolation orob l em t~-~ 
.

i~ amenable to rigorous anal ysis and leads to a new class of snl i e- f ’

~. i :r s defined on a closed contour C.

1 0  ~8rt inn  of a better terminology , they will be referred to as ~~~~~ ~~.

‘ .,r;~. t iO nS ’ since they yield interpolating functions for closed curves

Hil he ’t space theory of spline - functions will be used . Basic results neei1~
recalled in paragraph (2). Existence , uniqueness and characterization ~f th~
closed sp l ine functions are established in paragraph (3).

Tb ese results are restated in conventional (i.e. non abstract snace ’
~ n i l ‘ t  OnS

in paragrap h (4) where additional relevant properties (following from the hac i~.

i~h~ t r a c t  theo ry ) are a lso ~j~v’~n. A final paragraph offers few comments on the

o t r e r  cl asses of closed-spline functions which can be constructed by the s~ ’~

_ _ _ _ _ _ _ _

~

--

~ 

~~~~~~~~- -- .-..--.— 
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2. - THE ABSTRA CT SPLINE FUNCT ION THEORY -

The needed basic results of the Hu bert space formulation of spline-function
theory are summarized here for ready and convenient reference ~Seef4Jfor
greater details~

Let X ,~~, ~ be three real Hi lbert spaces with norms
and T : X —

~~~ 
A :X —~~~‘~~~~~ two linear continuous

operators , which , wi thout any loss of generality are supposed to be o~t

Given any fixed ~~~ 
, define the set , supposed non empty :

I~ ~~~€ X ~~~~~~~ (2.1)

and consider the following minimum problem

/ /T~11~ (2.2)

The element G~ .L~ c X , if it exists , is called the interpolating spline
corresponding to ( 7 A) 

~ ) .

The following existence and uniqueness theorem holds . Weq~eni I (~~~~tenre).

Theorem 1 -

“The solution of problem (2.2) exists for any ~ iff N(T) + N (A) is
closed in X and is unique 1ff , in addition , N(T) AN (A) = ~~~ 

“
.

Here N (B) denotes the null space of the operator B.
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The definition of the space S of spline-functions fol lows from the characteriza-
tion stated in

Theorem 2

“Under the hypothesis of Theorem 1 , ~‘6 .L~ is the interpolating spline cor-
responding to (1P~ ) 1ff

Here ~ ..>y denotes the inner product in ‘/ . Similar notation will be ad -n -

ted for the i nner products.).

The space S is the subspace of X defined by

~~~~~~~~ (2.3)

Theorem 1 can be formulated (and generalized ) in S as

Theorem 3

“For any ~~ there exists a uni que element 6€ S such that A(e)= z” .

The extrema l properties of interpolating spline are condensed in the fo1 lowin ~:

theorem .

Theorem 4

If z is an arbitrary fixed element of Z and G is the unique element of S su~
that A ( 6’ ) = z then
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a)  

j J T (~-~ ) J) ~~ llT (~~~
-

~~~)!J7 >1 

(2 4)

and any other 
~~~ S having this property belongs to the set

~~~~~~+ N(T)
b) 

JIT(~~~
-
~~~4! ~~~~ 1IT(~-~)JI, (2.5)

and ~~~~

‘ is the unique element of having this property .

Further discussion will be limited to the case of more specific interest here ,
in which the number of interpolating constraints is finite.

The space Z is consequently finite and , upon theorem 1 , existence is automati-
c a l l y guaranteed whereas uniqueness requires that N(T) be also finite .

Suppose then that Z C R ,with the usual inner product , and that N(T) is of
dimension q. Then : a) the operator A can be expressed as

(2.6)

where the~~’s are n independent, linear continuous functional on X; b) the set
can be written as

it : ~ ~ / < 
~ ~ ~~~~~ -,~ )& R ~

c) the following characterization theorem holds

Theorem 5 :

is the interpolating sp ine-function corresponding to (T,k’~,~~
iff there exist (n) coefficients A~ such that :

-r rr~~~ A K , ~~‘v (r)J~ (2.7)
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I .1Here I is the adjoint of I and E J denotes the orthogonal subspace.
The different classes of spline functions that can be obtained from the above
abstract formulation depends on the choices of X ,Y , I and )4

A particular instance is developed in the next paragraph.

3 - The closed spline-functions - Existence , uniqueness and characteriz ation

Let C be a closed contour , sufficiently smooth and regular for the validity of
all properties that wil l be used .

Take X = H (C)  and V = H°(C) with their standard inner product.

Denote by ~ the curvilinear coordinate along C measured from an arbitrary
i n i t i a l  p oint  F~ and normalized with respect to the length of C.

Thus ~~~~~ and %(f’0)~ o~~~(P0) ~~
As operator T: X : ~ (c)~ Y~ H

°(C) take where (d) stands for the
derivative with respect to ’

~ . Clearly T is linear and continuous.
Al,

Finally , for ZCR the (n) functionals K~ : 
)
~ (c)_.i~~ be defined by

~~~~~~~ ~~z(%~~~ ’~ (3 .1 )

w i t h  

- -5-—  ~~~—--~~~~ ~~~~~~~~~~~~~~~ -— ~~~~ - - -  - - - -5-  - -—- - - --- - -~~~~~~~~~~~~~ - - 5  - -  ,
~~~~~~~~~ 
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The null spaces of the operators A and I are then given by

N(a)~ T0~{z€ fil~’c)) C x ) ,
(~~~~~~~~o) ~5~~ 4LJ

(3.2 )

Hence their dimensions are equal to (n) and to one , respectively, and

N(~r)(’ iv(~) provided n~ ’1

The minimum problem (2.2) reads

~~~~~~~~ J fx~’?~ ) fd~
c. (3.3)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~and , according to theorem 1 , it has a unique solution , for any r, as long as
n >1 .

The exi stence and uniqueness of t~~~(’~~’) having been established , the next basic
task is to characterize it.

Upon the definition of adjoint , theorem 5 and equations (2.7), (3.1) one
has , subsequently :

< c~~ >
H

0 < ~ (3.4)

4 )  z = ‘4 x (~.) H ~(c)
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Always upon theorem 5, ~ A 
k~ ~

so that the coefficients A • must be such that

~~~~~~~~~~~~~~~ vz~ /Cr)
Now, as seen, ~~~ A/ CT) ~ so that always upon eouation (3.2k it
suffices to impose that ~ X~ be jf ’~ orthogonal to unity .
On account of eq. (3.1) th’is leads to

(3.5)

as the only homogeneous condition to be satisfied by the X; .Urhis is to be
contrasted with the situation of classical spline - functions for which the
coefficients 4 must satisfy the (q) homogeneous conditions ,~~~ 

,(
~ %-P~ ~

In order to characterize 
~~~

‘ or , equivalentl y, to obtain the additional con-
ditions which defines the .

~~ uniquely one must express the rightmost term
in equation (3.4) as a scalar product in H°(C) valid for any x’~ 11’(c) .

A Mac-Laurin development of with the rest expressed in intergral forms
yields : -i (

•
)

x~~~~=x (~ ) + ~~ ~~~~~~~~~~~~
J 

(~~1)1
where

(4

.+ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~
..
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Thus , on account of eq. (3.5)

~ 4x(’z~)~~~~ [
~~~ ~~~~~~~~~~~~~~~~~~~~~~~~*:i 

ai

c~)Upon the (absolute) continuity of the derivatives Z (%~) for 1 ~ k� q-lone can let

‘

~~~ i {�. ~±!~] ~(~) :  ~r(’~) x~~ ) d~a: ~s 

(3.7)

~~~~

where the (q~l) coefficients are uniquely determined in terms of
and . It is conven ient to elpress this functional dependence in terms of
the discontinuit ies of and of its first (q - 1) derivatives at the
“ initial” point  ~ , given by

~~~ 

_ _ _  
o~ ks (3.8)

~
ji’ )(+i (~—~~!

Repeated integrations by parts lead to

~
W(-c) x~kdt 

k ) ( ~~~~
-
~~
k-

~~~~
) 

f
~~~~
()

J

so that , by comparison with the first of equations (3.7) :

~~~ ~~~~~~ - k - I  
(3.9)

t * I  (c~’- K_ 1) I ’

_ _ _  ‘ -5 -~~~~~~~~~~~~~~~ —. .. ---—~- ..
, - 
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The last of these equations is identically satisfied , upon equation ( 3 . 8 )
and the others yield the required (q - 1) equations needed to determine Ic

terms of and . Equations (3.7) and (3.9) affords the required trans~rr -.

rnation for the first term on the right hand side of eq. (3.6). The transfnr’~
tion of the second term hinges on the identity :

- 

~ 
(- t) ~~~~~ 

~
.) + (‘

~~~

‘

L ~~

Let , on account of eq. (3.5)

~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~ (3.10)

with

(3.11)
1:1

Since :

, (3.12)

The term in~~~does not contribute to the integral appearing in equation (3.6)
and one may thus let :

_ _ _ _ _  _ _ _ _  
(3.13)

‘ ‘ (c ?_ 4 ) ! ‘~~‘

~(t) ~~~~~~~~~~~~~~~

_ _ _ _  

-5
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Substitution of equations (3.13), (3.7) into equation (3.6) leads finally
to:

, Vx~~’ (C) 

(3.14)

4. ~‘ ~ 
t~ _ _ _ _ _  + ~~

) ~~~~~
Comparison between eqs. (3.14) and (3.4) shows , on account of eq. (3.12) ,
that

~~~~~~~ ~~~~~~~~~~~~~~~ 
,<

t
# 

(‘15)

_ _ _

where is an arbitrary constant.

The expression (3. 15) for ( contains (n + q) coefficient (n coefficients 4
and q coefficients 

~~~ 
) .  The followi ng lemma shows that , on account

also of equation (3 .5) ,  only (n) of them are arbitrary .

L e m m a  (q)
“The function 

~~ 
and its first (q - 2) derivatives are continuous on C” .

P r o o f

Given the properties of polynomials and of the functions ( % —  %‘.; ~~ the
statement of the lemma needs to be proven only at the point P0.

In the interval 
~~~~~~ 

0/ t~, 3 eq. (3.15) reduces to :

_ _ _ _  

(3 .16 )

(i-i)!

L _ _ _ _ _ _ _  ____________ ~~~~~
‘ -

~~~~~~~~
-5- - ---- ~~~~~—-~~~~~-—.--- 5- -—- -,- - - - -5-  -.
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10 the interval 
~~~~ (

~~~
-

~~~~~) 
for any i so that

~ ( 4  ~ ~~~ 

• 

~~~~ ~ 
[~~, j~ (3. 7)

s~r:e ~~- r (
~~

‘
~) (

~~
_ ‘

~~) 
upon eqs. (3.10) and the second of eqs.

~‘3 .L~ )

~~~~~ ~~~~~~~~~~~~~~ _ _

(c~_~ )l

~rer i ~~ (3.16) and (3.17) it follows that

‘Q.~
.k) ~~~~~~~~~~~~ (~

,
.k ) 

(Ic) (i() 
(Ic)

~~~ ~~~

- (o k) - 
~~~~ 

(c.) 
= — 

,
~~ 

(
~
) = &lf i. (_i) o(~~~~

s ince , upon the second of eqs. (3.13) 
~

(o)
~
. 0 and

He nce , upon equations (3.9) and (3.1 1)

~~~~
_ ) 

~~~~~ k E E O, c
~
_ 23

and the proposition i~ proved .

The(q - 1) conditions

(uk)

- “ -5 —-5.- --- .—-- --- . -5- -5- - - - --- —~~~--5—- --. - - -—-,- - -5 --5-
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yield the (q - 1) equations which , together with equation (3 .5) ,  make it

possible to eliminate q coefficients ( 
~ 
,
~~

., ) out of the (n + q) upon
which depends.

(
~
)

The (q - 1) - th derivative of 6~ is constant in each open intervalJ ’
~~~%~~1

ii ~ i ~ n). Its discontinuity at the points of coordinate is equal to

The closed interpolating spline 
~~~~

‘ ( 
~ 

) is obtained by integrating equa-
tion (3.15) q times . The corresponding (q) arbi t ra ry  constants are deter m in ed
by imposing the continuity of~~~and of its first (q - 1) derivatives at
The function thus obtained will contain (n) arbitrary constants which are
determined (uni quely, upon theorem 5) from the (n) conditions ~~~ =

Existence , un iqueness and main characterization of the closed spline-functions
have thus been proved .

rn the next paragraph the additional properties of these classes of functions ,

‘~s derived from the general theory outlined in paragraph (2), w i l l  be pre-
t ented . To fac i l i tate a more wide spread comprehension abstract space nota-
tio n w i l l  be aban doned. To gi ve a comp lete panorama , the in itial interpolatin ci
sr-n blem and its solution will also be reformulated in standard notation.

4 - The Closed spline functions - Definition , characterization and pro pert ies

Given a sufficient ly smooth closed contour C and (n) arbitrary points P.
on it , let %~ (~i ~~~ 

t~~ ntj be their curvilinear coordinates (see
fi gure) measured from an arbitrary p p
initial point ~ and norma lized with
res pect to the length of C. 

~~~~~~~



-------
~~~ 

.--5
~~~~~~~~~~~~~~~~~~~~
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Define the (n) open intervals
~~
’
~~~%..~~ C

O ’
~~<~~~~< ~~~~~~~~~~and prescribe (n) values with 

The closed interpolating spline function 6’(~ ) of degree (q) correspor,d-ino
to ( 

~~,; 
) ( ~~ j~ .rn., ) is defined as the unique element of 117(C) such

that : 
.

~ ~
(
~•)~ ç ~ 

i~~~~~

In order that 6 ~ H (‘C.) be the closed interpolating spl- ine-funct ion
corresponding to ( ‘

~~~~~

. 

~~ ) it is necessary and sufficient that

a)~~’ be a polynomial of degree (2 q - 1) in each open interva lJ%’~
., ~~~~~

~~~~~~~~~~~b) ~5 be continuous , on C , together with its first 2(q - 1) derivativ es ; thus ,
in parti cular

~.(k )~~~ +) 
(k)

(
~~~~

)  ~

c) ~3~’ be such that

p 

- -—----— -~~~-~ -—
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The set of functions ‘
~~ 6 tf satisf ying the first two conditions constitute

a subspace S (the space of closed spline functions corresponding to
of dimension n.

For any element 1~ S (cfr . theorem 2)
(~~)

fr) 

~ 
(1k) d ~

~~~€ c)/ ~~~~~)~~o ; v [ ~~2J
A base of S is given by (n) 4~ ~ such that A~(’r.~) = and i t is

The following extrema l properties hold (cfr. theorem 4)

Given (n) arbitrary but fixed %‘.~ , if 6 is the uniqu e element of S such
that6 ( 

~~ 
) =~~ then

A) 

j [
(
~) - $ 

(
~ ) - 

~~~

and any other element having this property differs Prom G by a
constant

B) for any :

- - - . - --,

~

- - - - -
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and 6 is the unique element of having this property .

An element ‘~ 6 belongs to the space S of the closed spline-functions
corresponding to 1ff it is representable as

~~~~~~~~~ 
+ ~~~ 1I 

(
~~~
-k

~

.:’-’

.
~~~~~~ (2.i_i)!

where the (n) coefficients /~ and the (2q) coefficient satisfy the follo-
w i ng 2q equat ions

-i 2y~~ i ‘1

( K)  
~~~~~~~~~ 

X ~~~~~
. 

-I. 
~
) I . 

. ‘
~ i I. ~ 

‘
~ I

~~K~L ~r ~~~~ ~-‘ 

~9r ’J. 
~
o— ‘

~

c_~ K .~. 2 ~j - Z’
where : (K)(K)

)  ~~ (~~~~~)

For any function 
~ 

it is

=

The (n) coefficients (%~
) represent the values of the discontin uity of the

(2 q - l)-th derivative of s at the points of coordinate ?.

_ _ _  -. --— -~~~~~-— --- -5-5 .-—- - 5- ,
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When the following (n) equations

are added to eqs. (4-1), the resulting system of (n + 2q) eq ua t i ons , linear
in A L’ and , admits an unique solution .

It may be instructive to compare the closed-sp line functions considered herein
with the classical spline defined over the interval ra, bJ=~~O~lJand corre-
sponding to the partition

~~ ~~~~~ ~~~~~~~~ - . - . .

In the classical sp ine-functions the coefficients are identically zero for

~~ 
and the following (q) relations ~old 

j  
1 J

> X~’~~=o ~ ~~~~~~~
Upon letting :

~ re-c,-)
one deduces from equations ( ) , ( ) and ( ) that

~~~ ~~~~~~~ 

{& ‘)~ ~~ 
2~ ~~~~~~~~~~ 

‘
z~~~

k /
~ (~-k)~(z ~-~ - 4)! J

o~~k

k - 5 ’~~~~~~~ -5 -~~~-5~~~~ - -5 — - 
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so that , upon noticing that :

(k)
(

~~~~
)  

(k) ~ 
—1~~~

. 

— 
; ~ k ~ 2,4

~~~~~~
one f i nds  that

o~~ k~~~I9- I

with  the ~~~~~ uniquely determined for O.~ k~~-1. Thus one recovers that ,
as said in the introduction if one sim p ly takes and imposes ~(z~)c,~ .

~(%~) 
the first (q - 1) derivatives of s ( “

~~~ 
) are di scon-

tinuous at ~ and the other derivatives , up to the order 2q - 2 , v a n i s h
identically.

- CONCLUDING REMARKS

As with the classical spline—f unctions , other classes of closed-spl ine funct ions
can be introduced by making different assumptions as to the operator A . Thus ,
for instance , one could construct Hermitian closed-splines {by imposing ,
as interpolating constraints at the points ‘

~~~~~, 
, also the values of the first

d e r i v a t i v e  of the func t ion  ~‘t II’I Lc)] mi xed closed-sp lines constraints
equal to linear combinations of values for ~ and ~ , Fourier c losed-splined ,
and so on. Furthermore , one may construct similar classes of interpolatin q
and approximating “closed-sp ines (cfr. [11).

These further developments will be presented in future reports.
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